
The HashiCorp &
Terraform Risks
What is the appropriate mitigation?

Introduction						 3

Background						 3

Risks & Assumptions					 4

	 R-001 - HashiCorp / Terraform usage in Production

	 R-002 - Terraform Commercial Uncertainty

	 Assumptions	

Risk Mitigations						 5

	 M-001 - OpenTofu					 6

	 M-002 - Pin Terraform version at 1.5.7			 9

	 M-003 - Alternative products				 11

		 M-003a - Cloud Provider Products			 11

		 M-003b - Pulumi					 14

		 M-003c – In-House Developed Product		 17

	 M-004 - Accept the risk and continue with Terraform 	 20

Conclusion						 21

	 Scenario 1 – Existing Platform with Engineering bandwidth

	 Scenario 2 – Existing Platform with no Engineering bandwidth

	 Scenario 3 – Building a New Platform

	 Full Graph Summary

Omissions						 23

	 Quantifying future product development

Contributing Documents			 	 23

The HashiCorp &
Terraform Risks

2

https://livewyer.io
https://livewyer.io

3

Introduction
Since August 2023, there has been ongoing discourse surrounding HashiCorp›s

licensing changes and the implications for Enterprise Platforms that rely on its

products, particularly Terraform and Vault. This change has sparked significant

concern and uncertainty among organisations that have built their Enterprise

Platforms using these products.

This document adopts a Program Management perspective to evaluate the risks

posed to Enterprise Platforms by these August 2023 licence changes. Through

this risk and mitigation evaluation, we will aim to answer the following business

questions:

	» How do we mitigate the risk of this uncertainty?

	» Are any mitigation options valid?

	» Will my Platform circumstances impact my mitigation choice?

By examining the available mitigations, we seek to provide actionable insights and

strategic guidance for enterprises navigating the uncertainty of HashiCorp›s newly

adopted licensing framework.

Background
In the dynamic world of cloud infrastructure, HashiCorp established itself as a

cornerstone since its inception in 2012 by Mitchell Hashimoto and Armon Dadgar.

The company that brought us Terraform and Vault achieved significant milestones

over the years that shaped the landscape of Infrastructure as Code (IaC).

In March 2020, HashiCorp›s influence and relevance in the Cloud Native space were

cemented further when it joined the Cloud Native Computing Foundation (CNCF),

underscoring its commitment to Open Source and community-driven development.

Terraform V1.0 was announced in June 2021, marking its general availability and

affirming its maturity and stability for enterprises to use at the core of their Cloud

Platforms.

However, In August 2023, HashiCorp transitioned to a Business Source License (BSL

or BUSL), significantly affecting the future of Enterprise Platforms utilising Terraform

and other HashiCorp products.

https://livewyer.io

4

Examining Terraform specifically, from version 1.5.7 onwards, the BSL states that:

“A ‘competitive offering’ is a Product that is offered to third parties on a

paid basis, including through paid support arrangements, that significantly

overlaps with the capabilities of HashiCorp’s paid version(s) of the

Licensed Work”

Source: HashiCorp BSL

The wording of the BSL raised severe concerns within the cloud native community

about Terraform’s future use, concerns which were amplified further when

HashiCorp announced its partnership with IBM in April 2024.

Risks & Assumptions
When HashiCorp changed its source code licence from a Mozilla Public License

v2.0 (MPL 2.0) to a Business Source Licence v1.1 (BSL), it impacted the future

releases of all products. While existing versions of Terraform remain unaffected,

future iterations beyond 1.5.7 will see restrictions for Enterprises and their

Platforms, restricting them from leveraging new versions of Terraform in their

offerings.

The above actions from HashiCorp have resulted in two main risks for organisations

utilising Terraform within their Enterprise Platforms. These risks are caused by the

uncertainty created from both a commercial and delivery perspective.

R-001 — HashiCorp / Terraform usage in Production
There is a risk that HashiCorp will consider an Enterprise Platform utilising

Terraform beyond version 1.5.7 a competitor and in violation of its BSL licence.

The material released from HashiCorp needs to clarify whether an Enterprise

Platform providing services to customers can utilise Terraform for Infrastructure as

Code in production or whether they would be considered a competitor by doing so.

R-002 — Terraform Commercial Uncertainty
There is a risk that HashiCorp will change its licensing costs and begin charging

Terraform users from version 1.6 onwards.

While HashiCorp’s current statement is that users are free to continue using Terraform,

this is not guaranteed to continue, especially given IBM’s recent acquisition.

https://livewyer.io
https://www.hashicorp.com/bsl
https://choosealicense.com/licenses/mpl-2.0/
https://choosealicense.com/licenses/mpl-2.0/

5

Assumptions
The following high-level assumptions about your Platform will be used to

contextualise the mitigation options assessed and discussed later in this document:

A-001 — The risks R-001 and R-002 relate to an organisation running a large

Kubernetes Platform.

A-002 — This Platform comprises both Development and Production

environments.

A-003 — The Platform is currently using version 1.5.7 of Terraform.

A-004 — The Platform is built using solid architecture principles. (See LiveWyer

principles for building a Platform on lwy.io).

Risk Mitigations
Mitigations are available for every risk posed to a project, even if the mitigation is

simply accepting the risk. This is a feasible action if the remediation effort will cost

more than the impact of the risk should it materialise. That being said, it is crucial

to consider all mitigation options thoroughly before remediation implementation

occurs. Often, cheap short-term fixes have costly long-term consequences,

particularly when the mitigations are for large and complex Enterprise Cloud

Platforms.

This document will examine each mitigation, evaluating the positives, negatives,

and effort involved to provide a detailed recommendation, ultimately answering the

questions at the beginning of this document.

https://livewyer.io

6

M-001 — OpenTofu
OpenTofu is a Terraform fork created in response to HashiCorp’s switching to

its BSL license. The codebases are extremely similar, making this a like-for-like

alternative to Terraform.

You can find more information about its history on its website, particularly its FAQ

section: FAQ | OpenTofu.

Positives
Transitioning from Terraform to OpenTofu offers several significant advantages,

primarily by completely mitigating risks R-001 and R-002 without requiring

additional remedial actions. OpenTofu, a current like-for-like product, encompasses

all essential features needed for your platform’s Infrastructure as Code (IaC)

requirements. The active community support and ongoing feature development

for OpenTofu, often addressing previously unmet requests for Terraform, ensure

continuous enhancement and innovation of the Product. The close similarity

between the codebases of Terraform and OpenTofu further simplifies the

implementation process, minimising the need for extensive retraining of engineers.

According to OpenTofu, it serves as a drop-in replacement for Terraform,

compatible with versions 1.5.x and most of 1.6.x, requiring no code changes for

compatibility and is ready for production use. Thus, moving to OpenTofu from

Terraform is a strategic step that maintains operational efficiency while enhancing

the platform’s capabilities.

Negatives
Moving from Terraform to OpenTofu does come with several challenges. One

significant drawback is the urgency with which your platform’s management and

leadership team must decide. Being “under the gun” to choose is seldom ideal,

but a swift resolution minimises the associated risks. In large-scale enterprises,

decisions typically take time to navigate the necessary approval forums. This delay

could complicate the transition as the codebases of OpenTofu and Terraform are

expected to diverge over time. As the differences between the two products grow,

the complexity of migration will increase, potentially leading to greater operational

difficulties and the need for additional resources to manage the transition

effectively.

Effort
Transitioning from Terraform to OpenTofu will demand considerable effort from

various teams across multiple sprints. Although the current similar codebases

https://livewyer.io
https://opentofu.org/faq/
https://github.com/opentofu/opentofu/pulls?q=is%3Aopen+is%3Apr

7

make the implementation relatively straightforward, the high stakes and potential

consequences of any errors ensure that the effort involved is substantial.

Significant architectural effort is also necessary, as Infrastructure as Code (IaC) is

a critical component and best practice for any platform, necessitating thorough

discussions and approvals within the architecture team. Additionally, despite the

similarities between the codebases, comprehensive updates to your documentation

are essential to reflect the changes, ensuring that all stakeholders are informed and

aligned with the new architecture.

Summary
Transitioning from Terraform to OpenTofu is a viable solution that offers significant

advantages, such as complete mitigation of risks R-001 and R-002, active

community support, and minimal retraining due to similar codebases. However, the

urgency of a swift decision is crucial, as delays could lead to increased complexity

and operational difficulties due to the diverging codebases. While the effort

required will span multiple sprints and involve significant architectural input and

documentation updates, acting quickly will make the transition much smoother.

Therefore, this mitigation option becomes less appealing as time progresses.

If your team has bandwidth, and the decision can be made quickly, OpenTofu is a

fantastic mitigation option.

Graph Summary

https://livewyer.io

8

Table Summary

OpenTofu

Positives Negatives Effort

EXTRA LARGE MEDIUM LARGE

https://livewyer.io

9

M-002 — Pin Terraform version at 1.5.7
Given that both risks can only materialise in future versions of Terraform, it is

possible to pin your Platform’s Terraform version at V1.5.7 as a valid mitigation to

R-001 and R-002.

Positives
Pinning Terraform at version 1.5.7 offers significant advantages, primarily by

effectively mitigating risks R-001 and R-002. This version operates under the

Mozilla Public License v2.0 (MPL 2.0), ensuring compliance and stability for your

Platform. Unlike other methods, such as M-001 (OpenTofu), this mitigation approach

provides flexibility, allowing your organisation to wait for further clarifications

from HashiCorp regarding the implications of the Business Source License (BSL).

Therefore, this strategic pause provides the option to later pivot to alternative

mitigations like M-001 (OpenTofu) or M-004 (Accept Risk), depending on future

information released from HashiCorp. Additionally, the risk associated with this

approach is minimal, as the Platform will maintain its current functionality by

continuing to use a familiar version of Terraform. Thus, starting with this M-002

mitigation provides both time and flexibility, presenting a robust initial position for

ongoing risk management.

Negatives
Pinning Terraform at version 1.5.7 does come with some drawbacks. The primary

negative aspect is that your Platform will only be able to utilise features available

up to version 1.5.7. Although this version includes necessary patches under the

existing Mozilla Public License v2.0 (MPL 2.0), it will miss out on new features that

could benefit both your Platform and your engineering team. Additionally, while this

mitigation effectively addresses the immediate risks of R-001 and R-002, it is less

proactive than other options, and the limitation on new features might necessitate

further engineering actions down the line. Lastly, the longer the Platform remains

pinned at version 1.5.7, the more it will lag behind the latest versions of Terraform

and OpenTofu. This would complicate future updates or migrations, in addition

to the compliance risk of security enhancements being included in these Product

releases your Platform will not be able to utilise.

Effort
Implementing this mitigation requires minimal effort from the engineering,

architecture and documentation teams. The engineering effort needed to pin

Terraform at this version is relatively small, making the process straightforward.

Additionally, the documentation team will only need to make minor updates to

https://livewyer.io

10

reflect this change, ensuring that the overall effort involved in implementing this

mitigation strategy remains low.

Summary
M-002 offers significant benefits both by fully mitigating risks with minimal short-

term impact on the Platform and providing flexibility for future adjustments

based on HashiCorp’s updates. Although it has minor negatives, mainly due to the

availability of more proactive mitigations, and not being able to take advantage

of any Terraform new features, the minimal engineering and documentation effort

required makes M-002 an attractive option, mainly if your engineering teams are

occupied with other urgent matters.

Graph Summary

Table Summary

Pin Terraform

Positives Negatives Effort

EXTRA LARGE SMALL EXTRA SMALL

https://livewyer.io

11

M-003 — Alternative products
Given the wide variety of “Alternative products” available to replace Terraform, we

have split this section to focus on three separate examples. These examples may

not cover a complete list of available products, but they cover a broad range of

options.

We have chosen the following three “alternative products” to focus on:

M-003a — Cloud Provider Products

M-003b — Pulumi

M-003c — In-House Development

M-003a — Cloud Provider Products
Depending on your chosen cloud provider, you may want to consider the respective

product(s) to align your cloud infrastructure with your IaC product.

Below, we look at three of the most popular Cloud providers and their respective

IaC products:

AWS -> AWS CloudFormation

Azure -> Azure ARM Templates

GCP -> Google Deployment Manager

Positives
Transitioning from Terraform to a cloud provider’s native Infrastructure as Code

(IaC) does have advantages and will effectively mitigate the risks associated

with HashiCorp’s shift to a BSL license (R-001 and R-002). By adopting a cloud

provider’s IaC solution, organisations can remove the uncertainties and constraints

imposed by the new licensing model. In addition, aligning with a chosen Hyperscaler

grants access to dedicated support channels, improving operational efficiency and

reliability. Lastly, cloud-native IaC tools are often optimised for their respective

platforms, providing improved performance, stability, and support tailored to the

specific needs of your Platform infrastructure.

Negatives
While transitioning from Terraform to a cloud provider’s native Infrastructure as

Code (IaC) product can mitigate risks associated with HashiCorp’s BSL license

change, it also introduces several significant challenges. Firstly, the migration

https://livewyer.io

12

process would be lengthy and complex. A phased and gradual roll-out is

recommended over a big bang migration to mitigate implementation risks. Still, this

approach is far slower and would necessitate parallel running of both Terraform

and the new cloud product. This dramatically impacts engineering, documentation,

and architecture teams, as they manage two codebases, documentation sets, and

designs simultaneously until the migration is fully completed. Furthermore, this

move would sacrifice the vendor-agnostic nature of IaC, potentially resulting in

vendor lock-in and making it unsuitable for current or future multi-cloud platforms.

The complexity and risk associated with migrating such a critical component as IaC

are significant. Your engineers would need to undergo training to support the new

product, adding to the transition costs and time. Lastly, maintaining your platform

becomes significantly more complex as the new codebase differs from Terraform,

requiring management of both systems until the migration is completed.

Effort
Transitioning from Terraform to a cloud provider’s native Infrastructure as Code

(IaC) product is a significant and high-risk endeavour that requires extensive effort

across multiple teams. Key teams involved include Architecture, Engineering,

Product Owners, Project Managers, and the Documentation Team. Each team must

invest substantial time and effort to manage the platform during the migration

period, as they will need to parallel run two codebases until the transition is fully

completed. This parallel operation adds complexity and increases the workload for

all involved, necessitating careful planning and coordination to ensure a successful

migration.

Summary
Implementing M-003a is a viable mitigation. This would fully remediate the key

risks, and alignment with cloud-specific support is particularly advantageous for

Platforms on a single cloud. However, this transition comes with considerable

technical limitations. One of which is the potential of vendor lock-in. Whilst this

is a deviation from architecture best practices and could cause resiliency issues,

this may be an acceptable risk if your Platform is only ever hosted on a single

cloud. The second technical complexity is the lengthy and complex migration

process. This will involve managing dual codebases during this period, and impose

substantial burdens on architecture, engineering, documentation, and support

teams, with existing Terraform efforts lost and new training required. The extensive

effort involved necessitates significant resources across multiple teams and

continuous complexity in platform operations and support. Therefore, whilst this

mitigation is viable, other mitigations are more appealing.

https://livewyer.io

13

Graph Summary

Table Summary

Cloud Provider Products

Positives Negatives Effort

LARGE EXTRA LARGE EXTRA LARGE

https://livewyer.io

14

M-003b — Pulumi
In this section, we examine the potential of Pulumi as an alternative to Terraform so

that we can mitigate the risks associated with HashiCorp’s BSL license. By detailing

the positives, negatives, and implementation efforts, we aim to provide you with

a comprehensive assessment. This can form the basis of any decision regarding

Pulumi as a viable mitigation for your Platform.

Overview
From Pulumi’s website:

“Pulumi is a modern infrastructure as code Platform. It leverages existing

programming languages—TypeScript, JavaScript, Python, Go, .NET, Java,

and markup languages like YAML—and their native ecosystems to interact

with cloud resources”.

Based on the description above, Pulumi seems to be a modern alternative

to Terraform. When dealing with IaC, we want it to be declarative as a key

architectural principle. Multiple threads online discuss whether Pulumi is imperative

or declarative. For the sake of this report, we will assess it as a declarative tool, as

stated by Pulumi.

Positives
Similar to M-001 and M-002, the primary benefit of implementing Pulumi to replace

Terraform would be that the Pulumi mitigation completely removes the risks

posed by R-001 and R-002. The second positive of note is Pulumi’s use of common

programming languages, such as Python, Java, Node.js and more. This greatly

benefits engineering teams, allowing them flexibility and comfort when coding in

their preferred language. The final benefit is that Pulumi is Open Source; therefore,

there are support options available from both Pulumi and the Open Source

community.

Negatives
The significance of this first negative against using Pulumi for an existing

Platform cannot be stressed enough. Engineering Teams, Documentation Teams,

Architecture Teams, etc, will have to manage two codebases, documentation and

designs, respectively, as the migration occurs. This is known as “parallel running”.

Not only does this drastically increase effort for the teams mentioned above,

but the complexity of rolling out new features, addressing CVEs, maintaining the

Platform and dealing with customer incidents skyrockets. The second significant

https://livewyer.io
https://www.pulumi.com/docs/concepts/
https://www.pulumi.com/docs/languages-sdks/

15

risk in performing an X-Large Migration with something as important and ingrained

in your Platform as IaC is the ramifications of any errors would be vast and severe

and, therefore, a significant risk in itself to be approved by the business. Finally,

all existing code would be thrown away, there would be no re-use of code, and all

previous efforts to develop IaC through Terraform would be lost.

Effort
Our calculations consider the effort across multiple teams and skill sets X-Large.

The engineering teams would need to spend significant time implementing and

managing both codebases simultaneously, already mentioned as a substantial

negative to this mitigation.

In addition to Engineering teams, architecture would require an equally large

amount of effort, given the importance of designing the transition and final

architectures for a pivotal component like IaC.

The last team we will discuss in detail before the final impacted teams are listed

is the effort required from both Operations and Incident Management teams to

support implementation. Again, this was touched upon in the negatives section

above. Operating and supporting a platform is complex in nature, and managing a

platform with two codebases is not far short of doubling the effort and knowledge

required by these teams.

Other teams to mention are documentation and project management. Our

calculations and estimates consider that both teams’ efforts are significant in their

design and implementation activities.

Summary
Using Pulumi to replace Terraform is a viable option and mitigates risks R-001 and

R-002 in their entirety. That being said, the negatives involved in implementation

are vast for an existing platform, and we do not consider this a pragmatic option,

primarily because of the additional effort, complexity, and cost the Platform would

undertake.

If you were building a Platform from scratch, this option would become much more

appealing, but we believe it should be considered only in this scenario.

https://livewyer.io

16

Graph Summary

Table Summary

Pulumi

Positives Negatives Effort

EXTRA LARGE LARGE EXTRA LARGE

https://livewyer.io

17

M-003c — In-House Developed Product
Below, we assess the validity of developing an IaC tool In-House with your

development team. On the face of it, this seems completely viable. Negating the

principal risks and giving ownership and control of the product would prevent a

licensing change in the future, as it has with Terraform.

But delving deeper may have other implications, so let’s explore this mitigation in

more detail.

Positives
As mentioned above, the primary benefit of implementing an In-House solution is

the full mitigation and removal of R-001 and R-002. This option does not require

any future work and is a proactive form of mitigation. The secondary benefit of

developing an In-House product is the complete ownership of the product and

its roadmap. The product can be specifically tailored to meet the needs of your

Platform and organisation. In the past, criticism has been made of HashiCorp and

Terraform as requests for new features have gone unactioned for considerable

periods. With the control over your product, new features that deliver significant

value to your Platform can be prioritised accordingly.

Negatives
Unfortunately, this mitigation has many negative implications should you pursue

it. The most sizable negative which should be considered is the migration process

and the impact on your team. During this phased migration, your Engineering,

Documentation, Architecture, and other teams must handle two codebases,

documentation, and designs. This adds extreme complexity to maintaining a

Platform which already comes with an array of complexities without adding

additional where it is not needed.

In addition to maintenance and management, the migration itself is complex and

involves additional risk. IaC is a critical component of the Platform. Performing

a significant change to the codebase is a considerable risk that needs careful

and close management over a long time for a large production platform. It is a

considerable risk to perform a large Migration with something as important and

ingrained in your Platform as IaC.

The third negative for an In-House developed product is the same as for any

product: It will require considerable ongoing maintenance to ensure it continues

to add value. This point highlights the importance of continued support and

https://livewyer.io

18

sponsorship from senior stakeholders.

The final point we will discuss in detail is the impact this has on recruitment and

training. As your Platform scales and new services are added, it is natural that

you will need to increase your engineering capability. Having an In-House solution

for IaC means recruiting an engineer with experience in the tool is impossible.

Therefore, the newly hired engineer will require significant training before they can

manage the Platform, regardless of their previous experience.

Considering the large number of negative implications associated with this

mitigation, we have focused on describing the most impactful four. However, other

negative factors to consider would be:

1.	 In-house knowledge only provides a risk that the product may have a “shelf

life” equivalent to the developer’s time in the company.

2.	 Existing code would be thrown away, and no code would be reused. All

previous efforts to develop IaC through Terraform would be lost.

3.	 No external support from vendors would be available.

Effort
The effort involved with this mitigation action is extreme and the most sizable

of all mitigations examined in this report. We have taken into account the effort

involved in the initial Product Development, Migration, Training of current and new

engineers, and finally, the development of new features alongside the ongoing

maintenance of the product.

This mitigation would most impact the engineers. It would require significant

effort in all the stages mentioned above. The architecture and Documentation

teams would also be significantly affected, predominantly with the initial Product

design and migration stages, but they would also be involved with Operations and

maintenance.

From a Project Management perspective, this would require close management and

oversight in all phases, particularly the complex and lengthy migration process.

Finally, your incident teams would require initial training in your new product,

which again introduces risk and complexity when your Platform uses two different

codebases throughout the transition from Terraform to your In-House developed

alternative.

https://livewyer.io

19

Summary
Whilst the in-house developed product is a viable option for mitigating risks

R-001 & R-002, the negative implications and vast development, migration and

maintenance effort make this option extremely unappealing. Developing the

product will take a significant amount of time. Therefore, you would be managing

risks R-001 and R-002 for a lengthy period before you can even begin the migration

process.

If you were designing a Platform on a greenfield site, the nature of this being a

Product for your engineering team to maintain and develop alongside the Platform

would make other options much more viable and appealing while still managing to

mitigate the risks fully.

Control over the Product and the roadmap, while a positive aspect of this option,

does little to negate the large negatives and effort involved with this mitigation.

Overall, as a mitigation, we strongly advise against pursuing the development of an

In-House tool.

Graph Summary

Table Summary

In-House Developed Product

Positives Negatives Effort

MEDIUM EXTRA LARGE EXTRA EXTRA LARGE

https://livewyer.io

20

M-004 — Accept the risk and continue with
Terraform
We have explored a number of mitigations, but the one remaining is to purely

accept the risk. In essence, this is the “do nothing” approach, as no mitigations are

appropriate, or you believe the cost and impact of mitigating are more significant

than the combined likelihood, cost, and effort should the risks materialise. Let’s

delve into the positives, negatives, and efforts of accepting these risks below.

Positives
Although mitigation M-004 does not have a long list of positives, there are a couple.

Firstly, and obviously, by accepting Risks R-001 and R-002, your Platform will

continue to work without disruption. There will be no impact on customers or your

teams who support and maintain your Platform. In addition, your Platform can take

advantage of all new features Terraform releases in versions beyond 1.5.7.

Negatives
Similar to the positives, accepting the risks has few negatives, but they are

significant. Firstly, the risks are not mitigated. Therefore, from a risk management

perspective, the situation is being monitored indefinitely, and the potential impact

continues to loom over your team and Platform.

Effort
The effort involved in M-004 is minimal. You may need to engage your architecture

team and risk manager to gain approval for the acceptance.

Summary
Given how significant the impact could be if they materialise, we would not advise

accepting the risk. Whilst it could be an attractive option given how little effort is

involved and the fact you can continue to use Terraform and any new features it

may release in the future, the fact that neither risk has been mitigated results, in

our opinion, this should not be an option for your Platform.

https://livewyer.io

21

Graph Summary

Table Summary

Accept the risk

Positives Negatives Effort

SMALL MEDIUM EXTRA SMALL

Conclusion
Whilst we have assessed several mitigations available, three stand out as potential

options depending on your circumstances.

Scenario 1 – Existing Platform with Engineering
bandwidth
In this scenario, there is value in making the move from Terraform to OpenTofu (M-

001). While this option becomes less appealing over time, if your engineering team

currently has the bandwidth, mitigating these risks while the codebases are similar

is a very appealing option.

https://livewyer.io

22

Scenario 2 – Existing Platform with no Engineering
bandwidth
If your existing team is fully utilised with pressing new features and addressing

critical CVE’s amongst other important tasks, our recommendation is to pin

Terraform at version 1.5.7 (M-002). The benefit of this is you give yourself and your

team time to see if HashiCorp releases any new information in the future. With little

engineering effort, you can remove the risks and have the flexibility to pivot in the

future should you need to.

Scenario 3 – Building a New Platform
Whether you are in the design stages or having early discussions about creating a

Platform, both Pulumi (M-003b) and OpenTofu (M-001) are the standout candidates.

Pulumi will be an attractive candidate for your engineering teams, given the

flexibility in languages you can use. On the other hand, OpenTofu is the closest

direct replacement for Terraform, which will remain Open Source for its lifetime,

given the nature in which it was created. These mitigation options will allow you to

design and build a platform without the potential impacts of R-001 and R-002.

Full Graph Summary

The above summary shows the top-performing mitigations in our assessment. The

size of the bubbles indicates varying degrees of effort involved in each option, with

Pinning Terraform requiring the least effort and migrating to Pulumi requiring the

most effort of the three.

https://livewyer.io

23

Omissions
This section explains whether any factors, both positive and negative, were

excluded from this Risk mitigation study and documents the logic behind the

decision.

Quantifying future product development
Many articles across the Cloud Native community discuss whether OpenTofu or

Terraform is more “proactive” in dealing with issues and new feature requests from

the Cloud Native community.

On the one hand, OpenTofu states:

“Anyone who has used Terraform in the last eight years has probably come

across issues that took some time to be resolved. The large community

involved in developing OpenTofu means this will no longer be the case.”

Conversely, if you look at GitHub, the level of activity and commits on Terraform in

May and June is far higher for Terraform than OpenTofu.

Therefore, measuring the health of a project and its “proactiveness” is challenging.

The Cloud Native Native community has discussed this topic at length in numerous

articles, such as Measuring the Health of Git Repositories ️| by Augmentable

Software.

Given that there is no accurate way of monitoring and quantifying progressive

development, never mind estimating and quantifying future development activities,

we have purposefully omitted this factor from this document.

Contributing Documents
You can find a full Project Management Risk Log, which contains the details of how

each risk and mitigation’s values were assessed and calculated, here: PM Risk Log.

This document references the LiveWyer architectural best practices and design

principles. The full details are available on our website: LiveWyer Platform

Design Principles

Appendix

https://augmentable.medium.com/measuring-the-health-of-git-repositories-%EF%B8%8F-c0dea98c9ca5
https://augmentable.medium.com/measuring-the-health-of-git-repositories-%EF%B8%8F-c0dea98c9ca5
https://docs.google.com/spreadsheets/d/1LgWwLQTOqQfYzSI7CHHCFMehJ06K5myfdxvHGtiCd-k/edit?gid=1765168090#gid=1765168090
https://livewyer.io/resources/livewyer-platform-principles/
https://livewyer.io/resources/livewyer-platform-principles/
https://livewyer.io

